Interspike Interval Correlations, Memory, Adaptation, and Refractoriness in a Leaky Integrate-and-Fire Model with Threshold Fatigue

نویسندگان

  • Maurice J. Chacron
  • Khashayar Pakdaman
  • André Longtin
چکیده

Neuronal adaptation as well as interdischarge interval correlations have been shown to be functionally important properties of physiological neurons. We explore the dynamics of a modified leaky integrate-and-fire (LIF) neuron, referred to as the LIF with threshold fatigue, and show that it reproduces these properties. In this model, the postdischarge threshold reset depends on the preceding sequence of discharge times. We show that in response to various classes of stimuli, namely, constant currents, step currents, white gaussian noise, and sinusoidal currents, the model exhibits new behavior compared with the standard LIF neuron. More precisely, (1) step currents lead to adaptation, that is, a progressive decrease of the discharge rate following the stimulus onset, while in the standard LIF, no such patterns are possible; (2) a saturation in the firing rate occurs in certain regimes, a behavior not seen in the LIF neuron; (3) interspike intervals of the noise-driven modified LIF under constant current are correlated in a way reminiscent of experimental observations, while those of the standard LIF are independent of one another; (4) the magnitude of the correlation coefficients decreases as a function of noise intensity; and (5) the dynamics of the sinusoidally forced modified LIF are described by iterates of an annulus map, an extension to the circle map dynamics displayed by the LIF model. Under certain conditions, this map can give rise to sensitivity to initial conditions and thus chaotic behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chaotic firing in the sinusoidally forced leaky integrate-and-fire model with threshold fatigue

The leaky integrate-and-fire (LIF) model is one of the elementary neuronal models that has been widely used to gain understanding of the behavior of many excitable systems. The sinusoidally forced standard leaky integrate-and-fire model reproduces the quasiperiodic and phase locked discharge trains observed experimentally in neurons. However, this basic model fails to generate chaotic firing, w...

متن کامل

Neuron firing in driven nonlinear integrate-and-fire models.

Statistical properties of neuron firing are studied in the framework of a nonlinear leaky integrate-and-fire model that is driven by a slow periodic subthreshold signal. The firing events are characterized by first passage time densities. The experimentally better accessible interspike interval density generally depends on the sojourn times in a refractory state of the neuron. This aspect is no...

متن کامل

Interspike interval statistics of a leaky integrate-and-fire neuron driven by Gaussian noise with large correlation times.

We analytically investigate the interspike interval (ISI) density, the Fano factor, and the coefficient of variation of a leaky integrate-and-fire neuron model driven by exponentially correlated Gaussian noise with a large correlation time tau . We find a burstinglike behavior of the spike train, which is revealed by a dominant peak of the ISI density at small intraburst intervals and a slow po...

متن کامل

The MIT Press Journals

Neuronal adaptation as well as interdischarge interval correlations have been shown to be functionally important properties of physiological neu-rons. We explore the dynamics of a modified leaky integrate-and-fire (LIF) neuron, referred to as the LIF with threshold fatigue, and show that it reproduces these properties. In this model, the postdischarge threshold reset depends on the preceding se...

متن کامل

Nonrenewal spike trains generated by stochastic neuron models

Many of the stochastic neuron models employed in the neurobiological literature generate renewal point processes, i.e., successive intervals between spikes are statistically uncorrelated. Recently, however, much experimental evidence for positive and negative correlations in the interspike interval (ISI) sequence of real neurons has been accumulated. It has been shown that these correlations ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 2003